Odpowiedź :
[tex]\sin\alpha+\cos\alpha=\frac{4}{3}\qquad\alpha\in(0^\circ,90^\circ)[/tex]
a)
[tex](\sin\alpha-\cos\alpha)^2+4\sin\alpha*\cos\alpha=\sin^2\alpha-2\sin\alpha*\cos\alpha+\cos^2\alpha+4\sin\alpha*\cos\alpha=\\=\sin^2\alpha+2\sin\alpha*\cos\alpha+\cos^2\alpha=(\sin\alpha+\cos\alpha)^2=(\frac{4}{3})^2=\frac{16}{9}=1\frac{7}{9}[/tex]
b)
[tex]\sin\alpha+\cos\alpha=\frac{4}{3}\ |^2\\\sin^2\alpha+2\sin\alpha*\cos\alpha+\cos^2\alpha=\frac{16}{9}\\1+2\sin\alpha*\cos\alpha=\frac{16}{9}\\2\sin\alpha*\cos\alpha=\frac{16}{9}-1\\2\sin\alpha*\cos\alpha=\frac{7}{9}\ |:2\\\sin\alpha*\cos\alpha=\frac{7}{18}[/tex]
[tex]sin\alpha+cos\alpha=\frac43\\\alpha - \text{kat ostry}\\[/tex]
[tex]sin^2\alpha + cos^2\alpha=1\\\\(sin\alpha+cos\alpha)^2=sin^2\alpha+cos^2\alpha+2sin\alpha cos\alpha=(\frac43)^2\\1+2sin\alpha cos\alpha=\frac{16}9\\2sin\alpha cos\alpha=\frac{16}9-\frac99=\frac79[/tex]
[tex]a)\\(sin\alpha-cos\alpha)^2+4sin\alpha cos\alpha = sin^2\alpha+cos^2\alpha-2sin\alpha cos\alpha+4sin\alpha cos\alpha=1+2sin\alpha cos\alpha=1+\frac79=\frac99+\frac79=\frac{16}9[/tex]
[tex]b) \\2sin\alpha cos\alpha=\frac79 /*\frac12\\sin\alpha cos\alpha=\frac79*\frac12=\frac7{18}[/tex]