Odpowiedź :
Zad.1
[tex]a) (x+3)(y+1)=xy+x+3y+4\\b) (4a+1)(5-b)=20a-4ab+5-b=-4ab+20a-b-5\\c)(a-7)(a^2-c^2)=a^3-ac^2-7a^2+7c^2=a^2-7a^2-ac^2+7c^2\\d)(4x-2)(y-3)=4xy-12x-2y+6[/tex]
Zad.2
[tex]a)(x+2)(x+3)=x^2+3x+2x+6=x^2+5x+6\\b)(6a+1)(a-4)=6a^2-24a+a-4=6a^2-25a-4\\c)(3t+1)(1-4t)=3t-12t^2+1-4t=-12t^2-t+1\\d)(2ab-6)(2-6ab)=4ab-12a^2b^2-12+36ab=-12a^2b^2+40ab-12\\e)(-x+y)(4x+2y)=-4x^2-2xy+4xy+2y^2=-4x^2+2xy+2y^2\\f)(x+4y)(8x-y)=8x^2-xy+32xy-4y^2=8x^2+31xy-4y^2\\g)(3x-y)(x+y)=3x^2+3xy-xy-y^2=3x^2-2xy-y^2\\h)(ab-a)(4ab+8a)=4a^2b^2+8a^2b-4a^2b-8a^2=4a^2b^2+4a^2b-8a^2[/tex]