👤

Oblicz:
a) log8 pierwiastek z 8 = a
B) log5 pierwiastek sześcienny z 10 - log5


Oblicz A Log8 Pierwiastek Z 8 A B Log5 Pierwiastek Sześcienny Z 10 Log5 class=

Odpowiedź :

Odpowiedź i szczegółowe wyjaśnienie:

[tex]a)\ log_8 \sqrt8=log_88^\frac12=\frac12log_88=\frac12\cdot1=\frac12\\\\b)\ log5\sqrt[3]{10}-log5=log5+log\sqrt[3]{10}-log5=log\sqrt[3]{10}=log10^\frac13=\\=\frac13log10=\frac13\cdot1=\frac13\\[/tex]

Wykorzystano własności logarytmowania i potęgowania:

[tex]\sqrt[3]{a}=a^\frac13\\\sqrt{a}=a^\frac12\\\\log_ab^c=c\cdot log_ab\\\\log(a\cdot b)=log a+log b\\\\log_aa=1\\[/tex]