👤

wykaż że dla dowolnej liczby naturalnej wielomian w(x)=(x²+3x+1)²-1 jest iloczynem czterech kolejnych liczb naturalnych.

Odpowiedź :

[tex]w(x)=(x^2+3x+1)^2-1=(x^2+3x+1)^2-1^2=(x^2+3x+1+1)(x^2+3x+1-1)=\\\\(x^2+3x+2)(x^2+3x)=(x^2+x+2x+2)\cdot x(x+3)=[x(x+1)+2(x+1)]\cdot x(x+3)=\\\\(x+1)(x+2)\cdot x(x+3)=x(x+1)(x+2)(x+3)[/tex]

x, x+1, x+2, x+3 - kolejne liczby naturalne

Odpowiedź:

Szczegółowe wyjaśnienie:

w(x) = (x² + 3x + 1)² - 1

to

w(1) = (x² + 3x + 1)² - 1  = (1 + 3 + 1)²  - 1  = 24 = 1 * 2 * 3 * 4 = 24

w(2) = (x² + 3x + 1)² - 1 = (4 + 6 + 1)² - 1 = 120 = 2 * 3 * 4 * 5 = 120

w(3) =  (9 + 9 + 1)² - 1 = 19² - 1 = 360 = ............ = 3 * 4 * 5 * 6 = 360

w(4) = (16 + 12 + 1)² - 1 = 29² - 1 = 840 = ......... = 4 * 5 * 6 * 7 = 840

w(5) = (25 +15 + 1)² - 1 = 41² - 1 = 1680 = ........ = 5 * 6 * 7 * 8 = 1680...  to  ...       ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...  

w(n) = (n² + 3n + 1)² - 1 = n * (n + 1) * (n + 2) * (n + 3),   gdzie  n ∈ N,

co należało wykazać.