Zadanie 8/258 i zadanie 10/159

Odpowiedź:
[tex]a)\ \ \dfrac{1000\cdot(-10)^8}{10^9}=\dfrac{10^3\cdot10^8}{10^9}=\dfrac{10^{3+8}}{10^9}=\dfrac{10^1^1}{10^9}=10^{11-9}=10^2\\\\\\b)\ \ 81\cdot(-3)^5\cdot(-27)=3^4\cdot(-3)^5\cdot(-3)^3 =3^4\cdot3^5\cdot3^3=3^{4+5+3}=3^1^2\\\\Parzysta\ \ liczba\ \ minus\'ow\ \ daje\ \ wynik\ \ dodatni \\\\\\c)\ \ (-\frac{1}{32})\cdot\frac{1}{16}\cdot(\frac{1}{2})^6=(-\frac{1}{2})^5\cdot(\frac{1}{2})^4\cdot(\frac{1}{2})^6=-(\frac{1}{2})^{15}[/tex]
[tex]d)\ \ \dfrac{36\cdot(-6)^7\cdot(-6)^8}{6^1^4:(-6)}=\dfrac{6^2\cdot(-6)^7\cdot6^8}{-6^1^4:6}=\dfrac{-6^{2+7+8}}{-6^{14-1}}=\dfrac{-6^1^7}{-6^1^3}=\dfrac{6^1^7}{6^1^3}=\\\\=6^{17-13}=6^4[/tex]
[tex](-10)^8\ \ ujemna\ \ podstawa\ \ podniesiona\ \ do\ \ parzystej\ \ potegi\ \ daje\ \ wynik\ \ dodatni[/tex]