Błagam na dzisiaj tego potrzebuje

Odpowiedź:
Zadanie 8.
Obw. rombu: 5 cm * 4 = 20 cm
Obw. równoległoboku: 7 * 2 + 2 * 2 = 14 + 4 = 18 cm.
Odp. Większy obwód ma romb.
20 cm - 18 cm = 2 cm
Odp.: Różnica obwodów tych czworokątów wynosi 2 cm.
Zadanie 9.
α = 180° - 130° = 50°
β = 130°
Zadanie 10.
180° - 35° - 90° = 180° - 125° = 65°
Zadanie 11.
Od 10:12 do 11:48 minęła 1h i 36 min.
Od 11:48 do 13:05 minęło 1h i 17 min.
Odp.: Krócej trwała projekcja filmu "Księżniczka"
36 min - 17 min = 19 min
Odp.: Czas wyświetlania tego filmu był krótszy o 19 minut.
Zadanie 12.
Jeśli 100 płyt waży 160 dag, to pięć płyt waży:
100 = 160 dag / 10
10 = 16 dag / 2
5 = 8 dag
8 dag = 80 g.
Zadanie 13.
a)
1 cm = 50 000 cm
2 cm = x
x = 2 * 50 000 = 100 000 cm = 1000 m
b)
1 cm = 50 000 cm
x = 1500 m = 150 000 cm
x = 150 000 cm / 50 000 cm = 15 cm / 5 cm = 3 cm
Zadanie 14.
a) 43,5481 = ~ 44
b) 43,5481 = ~43,55
Szczegółowe wyjaśnienie:
Zadanie 8.
Romb ma wszystkie boki tej samej długości. Wiemy, że jeden bok rombu wynosi 5 cm, zatem jego obwód to cztery takie boki:
5 cm * 4 = 20 cm.
Czyli obwód rombu wynosi 20 cm.
W przypadku równoległoboku mamy dwie pary boków. W tym wypadku mamy dwa boki po 7 cm i dwa boki po 2 cm.
7 cm * 2 + 2 cm * 2 = 14 cm + 4 cm = 18 cm.
20 cm > 18 cm, więc romb ma większy obwód.
Różnica tych obwodów wynosi 2 cm, bo:
20 cm - 18 cm = 2 cm.
Zadanie 9.
Kąt β jest kątem przeciwległym do kąta 130°. A z właściwości kątów naprzeciwległych wiemy, że mają takie same miary. Stąd kąt β wynosi 130°.
Suma dwóch sąsiednich boków w równoległoboku wynosi zawsze 180°. Zatem α + β = 180°. Kąt β znamy i wynosi on 130°, zapisujemy:
α + 130° = 180°
α = 180° - 130° = 50°
Zadanie 10.
Suma kątów w trójkącie prostokątnym wynosi zawsze 180°. Z tego wiemy, że musi się w nim znajdować jeden kąt prosty, czyli 90°. Drugi jego kąt też znamy, to 35°, zatem musimy odjąć te dwa kąty, aby obliczyć pozostały kąt ostry.
180° - 90° - 35° = 90° - 35° = 65°
Zadanie 11.
Od godziny 10:12 do godziny 11:48 minęła dokładnie godzina (11 - 10) oraz 36 minut (48 - 12 = 36).
Aby wyliczyć ile minęło od godziny 11:48 do 13:05 wyliczmy sobie to kroczkami.
Od 11:48 do 12:00 mamy 12 minut.
Od godziny 12:00 do 13:00 mamy godzinę.
Od godziny 13:00 do 13:05 mamy 5 minut. Po zsumowaniu zostaje nam godzina i 5 minut plus 12 minut czyli 1 h i 17 minut.
Zadanie 12.
100 płyt waży 160 dag. Zapisujemy równanie:
100 = 160 dag
Dzielimy obie liczby przez 10.
10 = 16 dag.
I dzielimy jeszcze przez 2.
5 = 8 dag.
Jednakże 8 dag nie mamy w odpowiedzi to musimy pamiętać, że 8 dag to nic innego jak 80 g, bo 1 dag = 10 g. Odpowiedź 80 g mamy, więc prawidłowa odpowiedź to C.
Zadanie 13.
Skalę 1:50 000 możemy zapisać jako:
1 cm na mapie odpowiada 50 000 cm w terenie lub też w formie równania:
1 cm = 50 000 cm
a) Musimy wyliczyć ile metrów w terenie odpowiada 2 cm na mapie. Pomnóżmy po prostu sobie obie liczby z wyższego równania przez dwa.
2 cm = 100 000 cm.
Czyli 2 cm na mapie odpowiada 100 000 cm w terenie. A 100 000 cm to 1000 m.
b) 1500 m to 150 000 cm. Wiemy, że 50 000 cm w terenie to 1 cm na mapie. Podzielmy 150 000 cm przez 50 000 cm.
150 000 cm / 50 000 cm = 3 cm
Czyli 1500 m w terenie odpowiada 3 cm na mapie.
Zadanie 14.
a) Aby zaokrąglić liczbę 43,5481 do jedności musimy wziąć pod uwagę pierwszą liczbę po przecinku. W tym wypadku jest to 5. Piątkę zaokrąglamy w górę, więc wyjdzie nam 44
b) Aby zaokrąglić liczbę do części setnych musimy wziąć pod uwagę część tysięczną. Czyli w tym wypadku ósemkę. Ósemkę zaokrąglamy w górę, więc wyjdzie nam 43,55.