👤

Potrzebuje na jutro do 8:00
1. Zapisz w postaci sumy algebraicznej, jeśli to możliwe zredukuj wyrazy podobne. a)

Potrzebuje na jutro do 8:00

4x(x[tex]^{2}[/tex]-5x)=

b) Z[tex]^{2}[/tex](2z-3)=

c) 4(p-2)+2(3-p)=

d) 5(k-3) - k(4-k)=

e) -3z(z-6) – 2z(-3-2z)=

f) (7c+4)(4-2c)=

g) (2x-4y)(2y-3x)=

h) (4w-3s)(-3s-2w) – 3sw=

i) (3a+2)[tex]^{2}[/tex]=

j) (8p – 2k)[tex]^{2}[/tex]=

k) (-4x-3y)(y-2x)+x(2y+2)=

l) (c-3)(c+4) – (c+2)(5-3c)=

m) (3u-2p)(p-u) +(2u-p)(p[tex]^{2}[/tex]-2)=

n) (2a -3b)(-2b-2a) – (a+3b)[tex]^{2}[/tex]=

o) (-2m +3n)(n-m) +(-n +m)m=


Odpowiedź :

a)

[tex]4x(x^2-5x)=4x^3-20x^2[/tex]

b)

[tex]z^2(2z-3)=2z^3-3z^2[/tex]

c)

[tex]4(p-2)+2(3-p)=4p-8+6-2p=2p-2[/tex]

d)

[tex]5(k-3) - k(4-k)=5k-15-4k+k^2=k^2+k-15[/tex]

e)

[tex]-3z(z-6) - 2z(-3-2z)=-3z^2+18z+6z+6z^2=3z^2+24z[/tex]

f)

[tex](7c+4)(4-2c)=28c-14c^2+16-8c=-14c^2+20c+16[/tex]

g)

[tex](2x-4y)(2y-3x)=4xy-6x^2-8y^2+12xy=-6x^2+16xy-8y^2[/tex]

h)

[tex](4w-3s)(-3s-2w) - 3sw=-12sw-8w^2+9s^2+6sw=9s^2-6sw-8w^2[/tex]

i)

[tex](3a+2)^2=9a^2+12a+4[/tex]

j)

[tex](8p-2k)^2=64p^2-32pk+4k^2[/tex]

k)

[tex](-4x-3y)(y-2x)+x(2y+2)=-4xy+8x^2-3y^2+6xy+2xy+2x=8x^2+4xy+2x-3y^2[/tex]

l)

[tex](c-3)(c+4) -(c+2)(5-3c)=c^2+4c-3c-12-5c+3c^2-10+6c=4c^2 + 2c - 22[/tex]

m)

[tex](3u-2p)(p-u) +(2u-p)(p^2-2)=3up-3u^2-2p^2+2pu+2up^2-4u-p^3+2p=- p^3 + 2p^2u - 2p^2 + 5pu + 2p - 3u^2 - 4u[/tex]

n)

[tex](2a -3b)(-2b-2a)-(a+3b)^2=-4ab-4a^2+6b^2+6ab-a^2-6ab-9b^2=- 5a^2 - 4ab - 3b^2[/tex]

o)

[tex](-2m +3n)(n-m) +(-n +m)m=-2mn+2m^2+3n^2-3nm-nm+m^2=3m^2 - 6mn + 3n^2[/tex]