👤

przedstaw trójmian kwadratowy w postaci iloczynowej
a) y=5x^2-3x​


Przedstaw Trójmian Kwadratowy W Postaci Iloczynoweja Y5x23x class=

Odpowiedź :

[tex]zad.a\\ \\ y=5x^{2} -3x\\ \\ a=5,~~b=-3,~~c=0\\ \\ \Delta=(-3)^{2} -4\cdot 5\cdot 0=9\\ \sqrt{\Delta} =\sqrt{9} =3\\ \\ x_{1} =\dfrac{3-3}{10}=0 ~~\lor~~x_{2} =\dfrac{3+3}{10} =\dfrac{3}{5} \\ \\ y=5x\cdot (x-\dfrac{3}{5})~~postac~~iloczynowa[/tex]

[tex]zad.b\\ \\ y=16x^{2} -1\\ a=16,~~b=0,~~c=-1\\ \\ \Delta=0^{2} -4\cdot 16\cdot (-1)=64\\ \sqrt{\Delta} =\sqrt{64} =8\\ \\ x_{1} =\dfrac{0-8}{32} =-\frac{1}{4} ~~\lor~~x_{2} =\dfrac{0+8}{32} =\frac{1}{4} \\ \\ y=16\cdot (x-\dfrac{1}{4} )\cdot (x+\dfrac{1}{4} )~~postac~~iloczynowa[/tex]

[tex]zad.c\\ \\ y=9x^{2} -8\\ \\ a=9,~~b=0,~~c=-8\\ \\ \Delta = 0^{2} -4\cdot 9\cdot (-8)=288\\ \sqrt{\Delta} =\sqrt{288} =12\sqrt{2} \\ \\ x_{1} =\dfrac{0-12\sqrt{2} }{18} =-\dfrac{2\sqrt{2} }{3} ~~\lor~~x_{2} =\dfrac{0+12\sqrt{2} }{18} =\dfrac{2\sqrt{2} }{3} \\ \\ \\ y=9(x-\dfrac{2\sqrt{2} }{3})\cdot (x + \dfrac{2\sqrt{2} }{3})~~postac~~ iloczynowa[/tex]

Korzystam :

[tex]f(x)=ax^{2} +bx+c~~funkcja~~kwadratowa~~w~~postaci~~ogolnej\\ \Delta~~-~~trojmian~~kwadratowy~~nazywany~~delta\\ \Delta=b^{2} -4\cdot a\cdot c\\ \\ x_{1} =\dfrac{-b-\sqrt{\Delta} }{2a} ~~\lor~~x_{2} =\dfrac{-b+\sqrt{\Delta} }{2a}\\ \\ f(x)=a\cdot (x-x_{1} )\cdot (x -x_{2} )~~postac~~iloczynowa ~~funkcji~~kwadratowej[/tex]