c) 3+1 + Vitz, gdy x = 1; x = -2; x = 4.

[tex]\\\frac1{x+1}+\frac2{\sqrt{x+3}}[/tex]
dla x = 1
[tex]\frac1{1+1}+\frac2{\sqrt{1+3}}=\frac12+\frac2{\sqrt{4}}=\frac12+\frac22=\frac12+1=1\frac12[/tex]
dla x= -2
[tex]\frac1{-2+1}+\frac2{\sqrt{-2+3}}=\frac1{-1}+\frac2{\sqrt{1}}=-1+\frac2{1}=-1+2=1[/tex]
dla x = 4
[tex]\frac1{4+1}+\frac2{\sqrt{4+3}}=\frac15+\frac2{\sqrt{7}}=\frac15+\frac{2\sqrt7}7=\frac{7}{35}+\frac{10\sqrt7}{35}=\frac{7+10\sqrt7}{35}[/tex]