👤

7. Zapisz w jak najprostszej postaci:
a)
[tex] \sqrt{7 {}^{2} } + \sqrt{6} - ( \sqrt{ {6}^{} } ) {}^{2} = [/tex]
b)
[tex] \sqrt[3]{ {12}^{?3} } - ( \sqrt{17} ) {}^{2} - \sqrt{5} = [/tex]
c)
[tex]3 \sqrt{ {5}^{2 } } + 2 \sqrt{5} - 2 \sqrt[3]{( - 5) {}^{3} } = [/tex]
d)
[tex] - \sqrt[3]{ {5}^{3} } - \sqrt[3]{7} - \sqrt[3]{ - 7} = [/tex]​


Odpowiedź :

Odpowiedź:

[tex]a)\ \ \sqrt{7^2}+\sqrt{6}-(\sqrt{6})^2=7+\sqrt{6}-6=1+\sqrt{6}\\\\b)\ \ \sqrt[3]{12^3}-(\sqrt{17})^2-\sqrt{5}=12-17-\sqrt{5}=-5-\sqrt{5}\\\\c)\ \ 3\sqrt{5^2}+2\sqrt{5}-2\sqrt[3]{(-5)^3}=3\cdot5+2\sqrt{5}-2\cdot(-5)=15+2\sqrt{5}+10=25+2\sqrt{5}\\\\d)\ \ -\sqrt[3]{5^3}-\sqrt[3]{7}-\sqrt[3]{-7}=-5-\sqrt[3]{7}-(-\sqrt[3]{7})=-5-\sqrt[3]{7}+\sqrt[3]{7}=-5[/tex]