Oblicz pole i obwód figury

Odpowiedź:
A = (-3, -3) B = (0, -1) C = (2, 2) D = (-1 ,0)
AB = DC = AD = BC -> romb
długość odcinka AB
[tex]AB = \sqrt{(0 + 3)^2 + (-1 + 3)^2} = \sqrt{9+4} = \sqrt{13}[/tex]
[tex]DC = \sqrt{13}[/tex]
[tex]AD = \sqrt{(-1+3)^2 + (0+3)^2} = \sqrt{13}[/tex]
[tex]BC = \sqrt{13}[/tex]
[tex]OB = 4\sqrt{13}[/tex]
[tex]AC = \sqrt{(2+3)^2 + (2+3)^2} = \sqrt{50} = 5\sqrt{2}[/tex]
P = (\sqrt{13} * 5\sqrt{2} )/2