Odpowiedź :
[tex]w(x) = 2x^3 -x^2 +3\\w(1-2\sqrt3) = 2(1-2\sqrt3)^3-(1-2\sqrt3)^2+3=\\2(1 -3\cdot 1 \cdot 2\sqrt3 + 3\cdot 1 \cdot (2\sqrt3)^2 - (2\sqrt3)^3)-(1-4\sqrt3+12)+3 =\\2(1-6\sqrt3 +36-24\sqrt3)-(13-4\sqrt3)+3=\\2 (37 - 30 \sqrt3)-13+4\sqrt3 + 3 = \\74 - 60\sqrt3 - 10 + 4\sqrt3= 64 - 56\sqrt3[/tex]
[tex]w(3\sqrt2+2) = 2(3\sqrt2+2)^3 - (3\sqrt2+2)^2 +3=\\2(27\cdot 2\sqrt2 + 3\cdot 18\cdot2+ 3\cdot 3\sqrt2\cdot 4 + 8) -(18+12\sqrt2 +4)+3=\\2(54\sqrt2 +108 +36\sqrt2+8)-(22+12\sqrt2)+3=\\2(116+90\sqrt2)-22-12\sqrt2+3=\\232+180\sqrt2-19-12\sqrt2 =\\213+168\sqrt2[/tex]