👤

Wyznacz równanie prostej przechodzącej przez punkty (-2,0) i (3,10).​

Odpowiedź :

Odpowiedź:

Ta prosta ma postać:

y = 2x + 4

Szczegółowe wyjaśnienie:

Równanie kierunkowe prostej, wzór :

y = ax + b

Punkty : (- 2,0) i (3,10)

Tworzę układ równań podstawiając za x i y współrzędne z podanych punktów :

{ 0 = a * (-2) + b

{ 10 = a * 3 + b

Rozwiązuje metodą przeciwnych współczynników i obliczam wartość "a" :

{ 0 = -2a + b

{ 10 = 3a + b /*(-1)

{0 = - 2a + b

{ - 10 = - 3a - b

{ 0 + (-10) = -2a + (-3b) +b +( - b)

-10 = - 2a - 3b

- 10 = - 5a /:(-5)

a = 2

Obliczam " b " :

{ 0 = - 2a + b

0 = - 2 * 2 + b

- b = - 4. /*(-1)

b = 4

{ a = 2

{ b = 4

Podstawiam dane do wzoru :

y = ax + b

y = 2x + 4

Odp : prosta przechodząca przez podane punkty wyraża się wzorem:

y = 2x + 4 .

Go Studier: Inne Pytanie