👤

oblicz wartość funkcji y= x^2+10x +25: x^2-25, dla x= 2pierwiastek drugiego stopnia z 2 +1

Odpowiedź :

[tex]y = \frac{x^2+10x+25}{x^2-25}=\frac{(x+5)^2}{(x-5)(x+5)}=\frac{(x+5)(x+5)}{(x-5)(x+5)}=\frac{x+5}{x-5} \\\\ x=2\sqrt{2}+1 \ to \ y = \frac{2\sqrt{2}+1+5}{2\sqrt{2}+1-5}=\frac{2\sqrt{2}+6}{2\sqrt{2}-4}=\frac{2(\sqrt{2}+3)}{2(\sqrt{2}-2)}=\frac{\sqrt{2}+3}{\sqrt{2}-2}=\frac{\sqrt{2}+3}{\sqrt{2}-2} \cdot \frac{\sqrt{2}+2}{\sqrt{2}+2}= \\ = \frac{(\sqrt{2}+3)(\sqrt{2}+2)}{(\sqrt{2})^2-2^2}=\frac{2+2\sqrt{2}+3\sqrt{2}+6}{2-4}=\frac{5\sqrt{2}+8}{-2}=\frac{5\sqrt{2}}{-2} +\frac{8}{-2} =-2\frac{1}{2}\sqrt{2}-4[/tex]