Potrzebuje rozwiązań równania

[tex]a)\\\\(x^3+27)(x^2-4)=0 \\\\x^3+27=0\ \ \vee \ \ x^2-4=0\\\\x^3=-27\ \ \vee \ \ (x-2)(x+2)=0\\\\x=\sqrt[3]{-27}\ \ \vee \ \ x-2=0\ \ \vee \ \ x+2=0\\\\x=-3\ \ \vee \ \ x=2\ \ \vee \ \ x=-2 \[/tex]
[tex]b)\\\\(x^3-64)(x^2+3)=0 \\\\x^3-64=0\ \ \vee \ \ x^2+3=0\\\\x^3= 64\ \ \vee \ \ x^2=-3\ \ (sprzczne, poniewaz\ kazda \ liczba\ poniesiona\ do\ kwadratu\\ jest\ liczba\ nieujemna )\\\\x=\sqrt[3]{64} \\\\x=4[/tex]
[tex]c)\\\\(x^3-1)(x^2-2x-3)=0 \\\\x^3-1=0\ \ \vee \ \ x^2-2x-3=0\\\\ x^3=1\ \ \vee \ \ \Delta =b^2-4ac=(-2)^2-4*1*(-3)=4+12=16\\\\x=\sqrt[3]{1}\ \ \vee \ \ x_{1}=\frac{-b-\sqrt{\Delta }}{2a}=\frac{2-\sqrt{16}}{2*1}=\frac{2-4}{2}=-\frac{2}{2}=-1\\\\x=1\ \ \vee \ \ x_{2}=\frac{-b+\sqrt{\Delta }}{2a}=\frac{2+\sqrt{16}}{2*1}=\frac{2+4}{2}= \frac{6}{2}=2\\\\x\in \left \{ -1,1,2 \right \}[/tex]